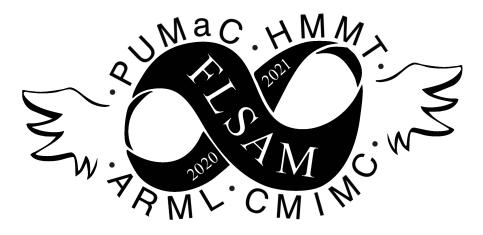
Florida Student Association of Mathematics



2021-2022 Everything Tryout

January 16-23, 2022

Round 2: Geometry

- **1.** Triangle *ABC*, with side lengths AB = 5, BC = 8, and CA = 7 is circumscribed by circle ω . Another point *A*' on ω is chosen such that *ABC* and *A'BC* have the same area. Find *AA*'.
- **2.** Consider an ellipse \mathcal{E} with a horizontal major axis of length 2a, where *a* is a positive real number. A circle Ω is inscribed tangent to the endpoints of the vertical minor axis. Another circle, ω , of radius *r*, is entirely contained in \mathcal{E} , externally tangent to Ω and internally tangent to \mathcal{E} at one endpoint of the major axis. Find the minimum possible value of the ratio a/r.
- **3.** Consider $\triangle ABC$ with $AB = AC = 20\sqrt{21}$ and $BC = 40\sqrt{7}$. Let *D*, *E* denote the projections of *A*, *B* onto \overline{BC} , \overline{CA} , respectively. Let lines *DE* and *AB* intersect at *P*. Given that *PD* can be expressed as $a\sqrt{b}$ for positive integers *a*, *b* with square-free *b*, compute a + b.
- **4.** In acute triangle $\triangle ABC$, let *H* be its orthocenter (intersection of altitudes), and let *O* be its circumcenter (intersection of perpendicular bisectors of sides). Circle (*AHO*) is tangent to (*ABC*), tan $A = \frac{26}{15}$, and BC = 52. Compute the area of $\triangle ABC$.
- **5.** Consider $\triangle ABC$ with AB = 13, BC = 14, CA = 15. Let M denote the midpoint of \overline{AC} , and let E be an variable point on line \overline{AB} such that AE < EC. Let D denote the point on \overline{BC} such that \overline{AD} , \overline{BM} , \overline{CE} concur and let F denote the point on \overline{AC} such that $\overline{DF} \parallel \overline{AB}$. The maximum possible area of $\triangle EFM$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers m, n. Find 100m + n.
- **6.** Convex cyclic quadrilateral APQB with vertices in that order is inscribed in circle ω with center *O*. There is a point *T* on segment \overline{AB} such that AT = AP, BT = BQ, and the midpoint *M* of \overline{PQ} satisfies $MT \perp AB$. Given MO = 41 and MT = 40, compute the sum of all possible values of *TO*.