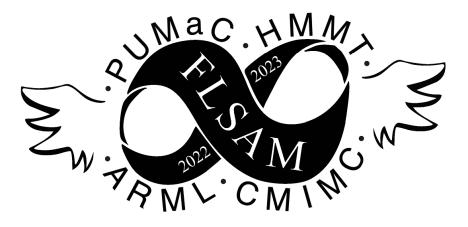
Florida Student Association of Mathematics



2022-2023 Everything Tryout

January 21-22, 2023

Round 2: Geometry

- **1.** Let *ABCD* be a rhombus with side length 6. Given that the angle bisectors of $\angle ABD$ and $\angle ACD$ intersect on \overline{AD} , compute A^2 , where A is the area of *ABCD*.
- **2.** Consider $\triangle ABC$ with AB = 4 and AC = 8. Given that the length of the angle bisector of $\angle BAC$ contained inside the circumcircle of $\triangle ABC$ is 12, find BC^2 .
- **3.** Concave pentagon *ABCDE* has side lengths all equal to 1 and $\angle D > 180^{\circ}$. Additionally, $AC = BE = \sqrt{1 + \sqrt{3}}$. Compute $\angle D$, in degrees.
- **4.** The parabolas $6y = x^2 100$ and $8x = y^2 100$ intersect in quadrants 2 and 4 of the coordinate plane at *A* and *B*, respectively. The perpendicular bisector of \overline{AB} passes through a unique lattice point (a, b). Compute $a^3 + b^3$.
- **5.** In unit square *ABCD*, equilateral triangles *ABE* and *ABF* are erected outside and inside the rectangle, respectively. Line *CF* intersects the circumcircle of *DEF* again at $S \neq F$, and line *DF* intersects the circumcircle of *CEF* again at $T \neq F$. Find the integer closest to ST^3 .
- 6. Triangle $\triangle ABC$ has side lengths AB = 13, BC = 14, and AC = 15, as well as circumcircle ω . The sides of $\triangle ABC$ partition ω into 4 regions: 1 triangle, and 3 circular segments bounded by a side opposite from a vertex, and a minor arc. Call these regions R_A , R_B , and R_C based on which vertex the side is opposite of (e.g. R_A is bounded by side \overline{BC}). Circles ω_A , ω_B , and ω_C are the circles inscribed in R_A , R_B , and R_C , respectively, with maximal area.

The external tangents of ω_B and ω_A intersect at B_1 , and the external tangents of ω_C and ω_A intersect at C_1 . The circle centered at B_1 passing through C and the circle centered at C_1 passing through B intersect inside $\triangle ABC$ at A_1 . Compute AA_1^2 .